Dispositivos Médicos na Abordagem de Doentes com Epilepsia
DOI:
https://doi.org/10.46531/sinapse/AR/230038/2024Palavras-chave:
Aprendizagem Automática, Convulsões/diagnóstico, Dispositivos Electrónicos Vestíveis, Epilepsia/diagnóstico, Epilepsia/tratamento, Interfaces Cérebro-ComputadorResumo
O número crescente de dispositivos médicos desenvolvidos e comercializados para melhorar a gestão de doentes com epilepsia reflete o crescente interesse em traduzir os avanços tecnológicos e o conhecimento sobre epilepsia numa melhor prestação de cuidados de saúde a esta população. O objetivo desta revisão narrativa da literatura é analisar as opções de dispositivos médicos disponíveis para deteção, tratamento e registo de crises epiléticas e a sua possível aplicação clínica. Os artigos incluídos foram selecionados através da base de dados PubMed, utilizando a query “(Epilepsy[MeSH Terms]) AND (SUDEP)) AND (Medical Device)) AND (English[Language])”. A deteção de crises epiléticas é essencial para a intervenção precoce e para otimizar a terapêutica de cada doente. No ambulatório, essa deteção é um desafio devido à sua imprevisibilidade. Tradicionalmente, o eletroencefalograma é o método direto de deteção utilizado em contexto hospitalar. Métodos indiretos de deteção, como eletrocardiograma, fotopletismografia, oxímetro, atividade eletrodérmica, acelerómetro e eletromiografia, mostraram potencial para detetar crises epiléticas em ambulatório. Vários dispositivos médicos foram desenvolvidos com base nos métodos menionados, com o objetivo de fornecer aos doentes soluções que possam usar no seu dia-a-dia. Alguns dos designs disponíveis são o eletroencefalograma com elétrodos retroauriculares, pulseiras, braçadeiras e sensores de pressão na cama. Equipados com diferentes funções, esses dispositivos podem ajudar na deteção precoce de crises epiléticas e melhorar a qualidade de vida de doentes e cuidadores. Existem também dispositivos disponíveis para o tratamento de crises epiléticas. Por meio de técnicas de neuromodulação, como a estimulação do nervo vago, a estimulação cerebral profunda e a neuroestimulação responsiva, esses dispositivos são apresentados como soluções para doentes com epilepsias refratárias não elegíveis para cirurgia ressectiva. Os doentes com epilepsia têm várias aplicações disponíveis online para o registo adequado de crises epiléticas. Essas aplicações ajudam os médicos na otimização da terapêutica com base na evolução clínica. A ampla gama de dispositivos disponíveis cria a oportunidade de personalizar a abordagem às necessidades específicas do doente. O conhecimento das características de cada dispositivo pode ajudar os médicos a melhorar a abordagem dos doentes com epilepsia.Downloads
Referências
Thijs RD, Surges R, O’Brien TJ, Sander JW. Epilepsy in adults. Lancet. 2019;393:689-701. doi: 10.1016/S0140-6736(18)32596-0.
Ryvlin P, Nashef L, Lhatoo SD, Bateman LM, Bird J, Bleasel A et al. Incidence and mechanisms of cardiorespiratory arrests in epilepsy monitoring units (MORTEMUS): a retrospective study. Lancet Neurol. 2013;12:966-77. doi: 10.1016/S1474-4422(13)70214-X.
Van Westrhenen A, de Lange WF, Hagebeuk EE, Lazeron RH, Thijs RD, Kars MC. Parental experiences and perspectives on the value of seizure detection while caring for a child with epilepsy: A qualitative study. Epilepsy Behav. 2021;124:108323. doi: 10.1016/j.yebeh.2021.108323.
Li W, Wang G, Lei X, Sheng D, Yu T, Wang G. Seizure detection based on wearable devices: A review of device, mechanism, and algorithm. Acta Neurol Scand. 2022;146:723-31. doi: 10.1111/ane.13716.
Rugg-Gunn F. The role of devices in managing risk. Epilepsy Behav. 2020;103:106456. doi: 10.1016/j.yebeh.2019.106456.
Sivathamboo S, Nhu D, Piccenna L, Yang A, Antonic-Baker A, Vishwanath S, et al. Preferences and User Experiences of Wearable Devices in Epilepsy: A Systematic Review and Mixed-Methods Synthesis. Neurology. 2022;99:e1380-92. doi: 10.1212/WNL.0000000000200794.
Patel UK, Anwar A, Saleem S, Malik P, Rasul B, Patel K, et al. Artificial intelligence as an emerging technology in the current care of neurological disorders. J Neurol. 2021;268:1623-42. doi: 10.1007/s00415-019-09518-3.
Bruno E, Simblett S, Lang A, Biondi A, Odoi C, Schulze-Bonhage A, et al. Wearable technology in epilepsy: The views of patients, caregivers, and healthcare professionals. Epilepsy Behav. 2018;85:141-9. doi: 10.1016/j.yebeh.2018.05.044.
Beniczky S, Wiebe S, Jeppesen J, Tatum WO, Brazdil M, Wang Y, et al. Automated seizure detection using wearable devices: A clinical practice guideline of the International League Against Epilepsy and the International Federation of Clinical Neurophysiology. Epilepsia. 2021;62:632-46. doi: 10.1111/epi.16818.
van Westrhenen A, Wijnen BFM, Thijs RD. Parental preferences for seizure detection devices: A discrete choice experiment. Epilepsia. 2022;63:1152-63. doi: 10.1111/epi.17202.
Schulze-Bonhage A, Sales F, Wagner K, Teotonio R, Carius A, Schelle A, Ihle M. Views of patients with epilepsy on seizure prediction devices. Epilepsy Behav. 2010;18:388-96. doi: 10.1016/j.yebeh.2010.05.008.
Regalia G, Onorati F, Lai M, Caborni C, Picard RW. Multimodal wrist-worn devices for seizure detection and advancing research: Focus on the Empatica wristbands. Epilepsy Res. 2019;153:79-82. doi: 10.1016/j.eplepsyres.2019.02.007.
Weisdorf S, Gangstad SW, Duun-Henriksen J, Mosholt KSS, Kjær TW. High similarity between EEG from subcutaneous and proximate scalp electrodes in patients with temporal lobe epilepsy. J Neurophysiol. 2018;120:1451-60. doi: 10.1152/jn.00320.2018.
You S, Hwan Cho B, Shon YM, Seo DW, Kim IY. Semisupervised automatic seizure detection using personalized anomaly detecting variational autoencoder with behind-the-ear EEG. Comput Methods Programs Biomed. 2022;213:106542. doi: 10.1016/j.cmpb.2021.106542.
Leutmezer F, Schernthaner C, Lurger S, Pötzelberger K, Baumgartner C. Electrocardiographic changes at the onset of epileptic seizures. Epilepsia. 2003;44:348-54. doi: 10.1046/j.1528-1157.2003.34702.x.
Ong JS, Wong SN, Arulsamy A, Watterson JL, Shaikh MF. Medical Technology: A Systematic Review on Medical Devices Utilized for Epilepsy Prediction and Management. Curr Neuropharmacol. 2022;20:950-64. doi: 10.2174/1570159X19666211108153001.
Poh MZ, Loddenkemper T, Swenson NC, Goyal S, Madsen JR, Picard RW. Continuous monitoring of electrodermal activity during epileptic seizures using a wearable sensor. Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:4415-8. doi: 10.1109/IEMBS.2010.5625988.
Casanovas Ortega M, Bruno E, Richardson MP. Electrodermal activity response during seizures: A systematic review and meta-analysis. Epilepsy Behav. 2022;134:108864. doi: 10.1016/j.yebeh.2022.108864.
Van de Vel A, Cuppens K, Bonroy B, Milosevic M, Jansen K, Van Huffel S, et al. Non-EEG seizure detection systems and potential SUDEP prevention: State of the art: Review and update. Seizure. 2016;41:141-53. doi: 10.1016/j.seizure.2016.07.012.
Zhao X, Lhatoo SD. Seizure detection: do current devices work? And when can they be useful? Curr Neurol Neurosci Rep. 2018;18:40. doi: 10.1007/s11910-018-0849-z.
J Jeppesen J, Beniczky S, Johansen P, Sidenius P, Fuglsang-Frederiksen A. Exploring the capability of wireless near infrared spectroscopy as a portable seizure detection device for epilepsy patients. Seizure. 2015;26:43-8. doi: 10.1016/j.seizure.2015.01.015. Erratum in: Seizure. 2015;29:174
Rodriguez-Villegas E, Chen G, Radcliffe J, Duncan J. A pilot study of a wearable apnoea detection device. BMJ Open. 2014;4:e005299. doi: 10.1136/bmjopen-2014-005299.
Lockman J, Fisher RS, Olson DM. Detection of seizure-like movements using a wrist accelerometer. Epilepsy Behav. 2011;20:638-41. doi: 10.1016/j.yebeh.2011.01.019.
Beniczky S, Conradsen I, Henning O, Fabricius M, Wolf P. Automated real-time detection of tonic-clonic seizures using a wearable EMG device. Neurology. 2018;90:e428-34. doi: 10.1212/WNL.0000000000004893.
Kjaer TW, Sorensen HB, Groenborg S, Pedersen CR, DuunHenriksen J. Detection of Paroxysms in Long-Term, Single-Channel EEG-Monitoring of Patients with Typical Absence Seizures. IEEE J Transl Eng Health Med. 2017;5:2000108. doi: 10.1109/JTEHM.2017.2649491.
Swinnen L, Chatzichristos C, Jansen K, Lagae L, Depondt C, Seynaeve L, et al. Accurate detection of typical absence seizures in adults and children using a two-channel electroencephalographic wearable behind the ears. Epilepsia. 2021;62:2741-52. doi: 10.1111/epi.17061.
Nasseri M, Nurse E, Glasstetter M, Böttcher S, Gregg NM, Laks Nandakumar A, et al. Signal quality and patient experience with wearable devices for epilepsy management. Epilepsia. 2020 Nov;61 Suppl 1:S25-S35. doi: 10.1111/epi.16527.
Brinkmann BH, Karoly PJ, Nurse ES, Dumanis SB, Nasseri M, Viana PF, et al. Seizure Diaries and Forecasting With Wearables: Epilepsy Monitoring Outside the Clinic. Front Neurol. 2021;12:690404. doi: 10.3389/fneur.2021.690404.
Beniczky S, Polster T, Kjaer TW, Hjalgrim H. Detection of generalized tonic-clonic seizures by a wireless wrist accelerometer: a prospective, multicenter study. Epilepsia. 2013;54:e58-61. doi: 10.1111/epi.12120.
Meritam P, Ryvlin P, Beniczky S. User-based evaluation of applicability and usability of a wearable accelerometer device for detecting bilateral tonic-clonic seizures: A field study. Epilepsia. 2018;59 Suppl 1:48-52. doi: 10.1111/epi.14051.
Halford JJ, Sperling MR, Nair DR, Dlugos DJ, Tatum WO, Harvey J, et al. Detection of generalized tonic-clonic seizures using surface electromyographic monitoring. Epilepsia. 2017;58:1861-9. doi: 10.1111/epi.13897.
Jeppesen J, Fuglsang-Frederiksen A, Johansen P, Christensen J, Wüstenhagen S, Tankisi H, Qerama E, Beniczky S. Seizure detection using heart rate variability: A prospective validation study. Epilepsia. 2020;61 Suppl 1:S41-S46. doi: 10.1111/epi.16511.
Jeppesen J, Beniczky S, Fuglsang Frederiksen A, Sidenius P, Johansen P. Modified automatic R-peak detection algorithm for patients with epilepsy using a portable electrocardiogram recorder. Annu Int Conf IEEE Eng Med Biol Soc. 2017;2017:4082-5. doi: 10.1109/EMBC.2017.8037753.
van Andel J, Thijs RD, de Weerd A, Arends J, Leijten F. Non-EEG based ambulatory seizure detection designed for home use: What is available and how will it influence epilepsy care? Epilepsy Behav. 2016;57:82-9. doi: 10.1016/j.yebeh.2016.01.003.
Narechania AP, Garic II, Sen-Gupta I, Macken MP, Gerard EE, Schuele SU. Assessment of a quasi-piezoelectric mattress monitor as a detection system for generalized convulsions. Epilepsy Behav. 2013;28:172-6. doi: 10.1016/j.yebeh.2013.04.017.
Arends J, Thijs RD, Gutter T, Ungureanu C, Cluitmans P, Van Dijk J, et al. Multimodal nocturnal seizure detection in a residential care setting: A long-term prospective trial. Neurology. 2018;91:e2010-9. doi: 10.1212/WNL.0000000000006545.
NightWatch. Seizure detection for nocturnal epilepsy. [accessed 2023 February 25, 2023]; Available from: https://nightwatchepilepsy.com/nightwatch/.
Sisterson ND, Wozny TA, Kokkinos V, Constantino A, Richardson RM. Closed-Loop Brain Stimulation for Drug-Resistant Epilepsy: Towards an Evidence-Based Approach to Personalized Medicine. Neurotherapeutics. 2019;16:119-27. doi: 10.1007/s13311-018-00682-4.
Sun FT, Morrell MJ. The RNS System: responsive cortical stimulation for the treatment of refractory partial epilepsy. Expert Rev Med Devices. 2014;11:563-72. doi: 10.1586/17434440.2014.947274.
Fisher RS, Afra P, Macken M, Minecan DN, Bagić A, Benbadis SR, et al. Automatic Vagus Nerve Stimulation Triggered by Ictal Tachycardia: Clinical Outcomes and Device Performance--The U.S. E-37 Trial. Neuromodulation. 2016;19:188-95. doi: 10.1111/ner.12376.
Salanova V, Sperling MR, Gross RE, Irwin CP, Vollhaber JA, Giftakis JE, et al. The SANTÉ study at 10 years of follow-up: Effectiveness, safety, and sudden unexpected death in epilepsy. Epilepsia. 2021;62:1306-17. doi: 10.1111/epi.16895.
Hesdorffer DC, Tomson T, Benn E, Sander JW, Nilsson L, Langan Y, et al. Combined analysis of risk factors for SUDEP. Epilepsia. 2011;52:1150-9. doi: 10.1111/j.1528-1167.2010.02952.x.
Ryvlin P, Rheims S, Hirsch LJ, Sokolov A, Jehi L. Neuromodulation in epilepsy: state-of-the-art approved therapies. Lancet Neurol. 2021;20:1038-47. doi: 10.1016/S1474-4422(21)00300-8.. Erratum in: Lancet Neurol. 2021;20:e7.
Simula S, Daoud M, Ruffini G, Biagi MC, Bénar CG, Benquet P, et al. Transcranial current stimulation in epilepsy: A systematic review of the fundamental and clinical aspects. Front Neurosci. 2022;16:909421. doi: 10.3389/fnins.2022.909421.
Lampros M, Vlachos N, Zigouris A, Voulgaris S, Alexiou GA. Transcutaneous Vagus Nerve Stimulation (t-VNS) and epilepsy: A systematic review of the literature. Seizure. 2021;91:40-8. doi: 10.1016/j.seizure.2021.05.017.
Elger CE, Hoppe C. Diagnostic challenges in epilepsy: seizure under-reporting and seizure detection. Lancet Neurol. 2018;17:279-88. doi: 10.1016/S1474-4422(18)30038-3.
Escoffery C, McGee R, Bidwell J, Sims C, Thropp EK, Frazier C, Mynatt ED. A review of mobile apps for epilepsy self-management. Epilepsy Behav. 2018;81:62-9. doi: 10.1016/j.yebeh.2017.12.010.
Alzamanan MZ, Lim KS, Akmar Ismail M, Abdul Ghani N. Self-Management Apps for People With Epilepsy: Systematic Analysis. JMIR Mhealth Uhealth. 2021;9:e22489. doi: 10.2196/22489.
Downloads
Publicado
Como Citar
Edição
Secção
Licença
Direitos de Autor (c) 2024 João Carrola Costa, Leonor Dias, Marta Carvalho
Este trabalho encontra-se publicado com a Creative Commons Atribuição-NãoComercial 4.0.