O Uso de Brain Computer Interface na Intervenção em Pessoas com Afasia Pós-Acidente Vascular Cerebral: Uma Revisão Sistemática
DOI:
https://doi.org/10.46531/sinapse/AR/81/2025Palavras-chave:
Acidente Vascular Cerebral/complicações, Afasia/etiologia, Afasia/reabilitação, Interfaces Cérebro-Computador, Neurorretroalimentação, Reabilitação de Acidente Vascular CerebralResumo
Introdução: A afasia pós-acidente vascular cerebral tem um impacto significativo ao nível da qualidade de vida da pessoa com esta alteração e nos recursos exigidos no setor da saúde. Tem existido um interesse crescente em investigar novas metodologias de intervenção, como as que integram a tecnologia brain computer interface (BCI). O objetivo deste trabalho é analisar de que forma a utilização desta tecnologia em contexto terapêutico poderá potenciar a recuperação das competências linguísticas e comunicativas das pessoas com afasia.Método: Revisão sistemática da literatura através das diretrizes do Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), envolvendo pesquisas nas bases de dados PubMed Central, SciELO, LILACS, Web of Science e nas bases de dados integradas na plataforma EBSCO HOST, sem restrição temporal ou de língua, com o recurso a termos MeSH (Medical Subject Headings) e a termos não padronizados, em inglês. O processo de seleção dos estudos foi efetuado de forma independente por dois investigadores via plataforma Rayyan®. A análise de evidência dos estudos elegíveis em triagem foi realizada através do modelo de níveis de evidência e qualidade dos estudos John Hopkins.
Resultados: Obteve-se um total de 198 artigos, dos quais quatro foram incluídos nesta revisão sistemática, após eliminação de duplicados e aplicação dos critérios de elegibilidade. A intervenção terapêutica com base num sistema BCI poderá potenciar o reforço da rede linguística e a restruturação das redes funcionais de pessoas com afasia, devido ao mecanismo de neurofeedback que proporciona. Alguns autores encorajam o desenvolvimento de sistemas BCI com a integração de diferentes técnicas (e.g. ressonância magnética funcional em combinação com o eletroencefalograma). A investigação nesta área é recente, sendo os estudos escassos e maioritariamente de tipologia quasi-experimental. Os artigos incluídos nesta revisão apresentam uma qualidade de evidência reduzida.
Conclusão: A utilização de BCI poderá ter uma influência positiva na reabilitação da linguagem e comunicação de pessoas com afasia. Porém, a integração desta tecnologia recente na intervenção terapêutica enfrenta, ainda, vários desafios, sendo necessários estudos mais robustos que permitam a criação de protocolos específicos e diretrizes clínicas.
Downloads
Referências
Brookshire RH, McNeil MR. Introduction to Neurogenic Communication Disorders. Amsterdam: Elsevier Health Sciences; 2014.
Papathanasiou I, Coppens P, Davidson B. Aphasia and related neurogenic communication disorders: basic concepts, management, and use of technology. In: Aphasia and Related Neurosgenic Communication Disorders. 3rd ed. London: Jones & Bartlett Publishers; 2022.
Grönberg A, Henriksson I, Stenman M, Lindgren AG. Incidence of Aphasia in Ischemic Stroke. Neuroepidemiology. 2022;56:174-82. doi:10.1159/000524206
Dickey L, Kagan A, Lindsay MP, Fang J, Rowland A, Black S. Incidence and Profile of Inpatient Stroke-Induced Aphasia in Ontario, Canada. Arch Phys Med Rehabil. 2010;91:196-202. doi:10.1016/j.apmr.2009.09.020
Patricio B, Jesus L, Cruice M, Hall A. Quality of Life Predictors and Normative Data. Soc Indic Res. 2014;119:1557-70. doi:10.1007/s11205-013-0559-5
Bullier B, Cassoudesalle H, Villain M, Cogné M, Mollo C, De Gabory I, et al. New factors that affect quality of life in patients with aphasia. Ann Phys Rehabil Med. 2020;63:33-7. doi:10.1016/j.rehab.2019.06.015
Laures-Gore JS, Dotson VM, Belagaje S. Depression in Poststroke Aphasia. Am J Speech Lang Pathol. 2020;29:1798-810. doi:10.1044/2020_AJSLP-20-00040
Baker C, Worrall L, Rose M, Hudson K, Ryan B, O'Byrne L. A systematic review of rehabilitation interventions to prevent and treat depression in post-stroke aphasia. Disabil Rehabil. 2018;40:1870-92. doi:10.1080/09638288.2017.1315181
Spaccavento S, Craca A, Del Prete M, Falcone R, Colucci A, Di Palma A, et al. Quality of life measurement and outcome in aphasia. Neuropsychiatr Dis Treat. 2013;9:27-37. doi:10.2147/NDT.S52357
Dalamans RJP, De Witte L, Wade D, Van Den Heuvel W. Social participation through the eyes of people with aphasia. Int J Lang Commun Disord. 2010;45:537-50. doi:10.3109/136828200032236333
Mazaux JM, Lagadec T, de Seca MP, Zongo D, Asselineau J, Douce E, et al. Communication activity in stroke patients with aphasia. J Rehabil Med. 2013;45:341-6. doi:10.2340/16501977-1122
Bersano A, Burgio F, Gattinoni M, Candelise L. Aphasia Burden to Hospitalised Acute Stroke Patients: Need for an Early Rehabilitation Programme. Int J Stroke. 2009;4:443-47. doi:10.1111/j.1747-4949.2009.00349.x
Flowers HL, Skoretz SA, Silver FL, Rochon E, Fang J, Flamand-Roze C, et al. Poststroke aphasia frequency, recovery, and outcomes: a systematic review and meta-analysis. Arch Phys Med Rehabil. 2016;97:2188-201.e8. doi:10.1016/j.apmr.2016.03.006
Simmons-Mackie N, Kagan A. Application of the ICF in Aphasia. Semin Speech Lang. 2007;28:244-53. doi:10.1055/s-2007-986521
Meier EL, Johnson JP, Pan Y, Kiran S. A lesion and connectivity-based hierarchical model of chronic aphasia recovery dissociates patients and healthy controls. NeuroImage Clin. 2019;23:101919. doi:10.1016/j.nicl.2019.101919
Sheppard SM, Sebastian R. Diagnosing and managing post-stroke aphasia. Expert Rev Neurother. 2021;21:221-34. doi:10.1080/14737175.2020.1855976
RELEASE Collaboration & Stahl. Dosage, Intensity, and Frequency of Language Therapy for Aphasia: A Systematic Review-Based, Individual Participation and Network Meta-Analysis. Stroke. 2022;53:556-67. doi:10.1161/STROKEAHA.121.035210
Brady MC, Kelly H, Godwin J, Enderby P, Campbell P. Speech and language therapy for aphasia following stroke. Cochrane Database Syst Rev. 2016;2016:CD000425. doi:10.1002/14651858.CD000425.pub4
Elman RJ. C.A.P.E.: A checklist of four essential and evidence-based categories for aphasia intervention. In: Neurogenic Communication Disorders and the Life Participation Approach: The Social Imperative in Supporting Individuals and Families. San Diego: Plural Publishing Inc.; 2021. p.21-52.
Brogan E, Ciccone N, Godecke E. An exploration of aphasia therapy dosage in the first six months of stroke recovery. Neuropsychol Rehabil. 2021;31:1254-88. doi:10.1080/09602011.2020.1776135
Martins IP, Leal G, Fonseca I, Farrajota L, Aguiar M, Fonseca J, et al. A randomized, rater-blinded, parallel trial of intensive speech therapy in sub-acute post-stroke aphasia: the SP-I-R-IT study. Int J Lang Commun Disord. 2013;48:421-31. doi:10.1111/1460-6984.12018
Pierce JE, O'Halloran R, Menahemi-Falkov M, Togher L, Rose ML. Comparing higher and lower weekly treatment intensity for chronic aphasia: A systematic review and meta-analysis. Neuropsychol Rehabil. 2021;31:1289-313. doi:10.1080/09602011.2020.1768127
Gallette EE, Barrett AM. Impairment and functional interventions for aphasia: having it all. Curr Phys Med Rehabil Rep. 2014;2:114-20. doi:10.1007/s40141-014-0050-5
Cherney LR, Lee JB, Kim KY, Van Vuuren S. Web-based Oral Reading for Language in Aphasia (Web ORLA @): A pilot randomized control trial. Clin Rehabil. 2021;35:976-87. doi:10.1177/0269215520988475
Melizer JA, Baird AJ, Steele RD, Harvey SJ. Computer-based treatment of poststroke language disorders: a non-inferiority study of telerehabilitation compared to in-person service delivery. Aphasiology. 2018;32:290-311. doi:10.1080/02687038.2017.1355440
Marshall J, Booth T, Devane N, Galliers J, Greenwood H, Hilari K, et al. Evaluating the Benefits of Aphasia Intervention Delivered in Virtual Reality: Results of a Quasi-Randomised Study. PloS One. 2016;11:e0160381. doi:10.1371/journal.pone.0160381
Kiran S, Thompson CK. Neuroplasticity of Language Networks in Aphasia: Advances, Updates, and Future Challenges. Front Neurol. 2019;10:295. doi:10.3389/fneur.2019.00295
Bookbacher MA, Francisco G, Lee R, Olson J, Solinsky R, Bonnier M. Brain Computer Interfaces in Rehabilitation Medicine. PN&R. 2018;10:S233-43. doi:10.1016/j.pmrj.2018.05.028
Bocquelier F, Hueben T, Grim L, Chabardes S, Yvert B. Key considerations in designing a speech brain-computer interface. J Physiol Paris. 2016;110:392-401. doi:10.1016/j.jphysparis.2017.07.002
Lebedev M. Brain-machine interfaces: an overview. Transl Neurosci. 2014;5:99-110. doi:10.2478/s13380-014-0212-z
Daly JJ, Wolpaw JR. Brain-computer interfaces in neurological rehabilitation. Lancet Neurol. 2008;7:1032-43. doi:10.1016/S1474-4422(08)70223-0
Nicolas-Alonso LF, Gomez-Gil J. Brain Computer Interfaces, a Review. Sensors. 2021;12:1211-79. doi:10.3390/s120201211
Silvoni S, Ramos-Murguladeja A, Cavinato M, Volpato C, Cissotto G, Turolla A, et al. Brain-Computer Interface in Stroke: A Review of Progress. Clin EEG Neurosci. 2011;42:245-52. doi:10.1177/155005941104200410
Sreedharan S, Sitaram R, Paul JS, Kesavadas C. Brain-computer interfaces for neurorehabilitation. Crit Rev Biomed Eng. 2013;41:269-79. doi:10.1615/critrevbiomedeng.2014010697
Birbaumer N. Breaking the silence: Brain-computer interfaces (BCI) for communication and motor control. Psychophysiology. 2006;43:517-32. doi:10.1111/j.1469-8986.2006.00456.x
Mirlina MF, Das SC, Kabir MM, Lima AA, Islam MR, Walambek Y. Brain-Computer Interface: Advancement and Challenges. Sensors. 2021;21:5746. doi:10.3390/s21175746
van Gerven M, Farquhar J, Schaefer R, et al. The brain-computer interface cycle. J Neurol Eng. 2009;6:041001. doi:10.1088/1741-2560/6/4/041001
Barbosa S, Pires G, Nunes U. Toward a reliable gaze-independent hybrid BCI combining visual and natural auditory stimuli. J Neurosci Methods. 2016;261:47-61. doi:10.1016/j.jneumeth.2015.11.026
Mannan MMM, Kamran MA, Kang S, Choi HS, Jeong MY. A Hybrid Speller Design Using Eye Tracking and SSVEP Brain-Computer Interface. Sensors. 2020;20:891. doi:10.3390/s20030891
Pires G, Barbosa S, Nunes U, Goncalves E. Visuo-auditory stimuli with semantic, temporal and spatial congruence for a P300-based BCI: An exploratory test with an ALS patient in a completely locked-in state. J Neurosci Methods. 2022;379:109661. doi:10.1016/j.jneumeth.2022.109661
Xu M, Han J, Wang Y, Jung TP, Ming D. Implementing Over 100 Command Codes for a High-Speed Hybrid Brain-Computer Interface Using Concurrent P300 and SSVEP Features. IEEE Trans Biomed Eng. 2020;67:3073-82. doi:10.1109/TBME.2020.2975614
Amini S, Fazel-Rezai R, Asadpour V. A Review of Hybrid Brain-Computer Interface Systems. Adv Hum-Comput Interact. 2013;2013:e187024. doi:10.1155/2013/187024
Birbaumer N, Kubler A, Ghansyim N, Hinterberger T, Perelmouter J, Kaiser J, et al. The thought translation device (ITD) for completely paralyzed patients. IEEE Trans Rehabil Eng. 2000;8:190-3. doi:10.1109/86.847812
Zimmer CA, Devlin PM, Werner JL, Stamp CV, Bellian KT, Powell DM, et al. Adaptive Communication Systems for Patients with Mobility Disorders. J Bum Care Rehabil. 1991;12:353-60. doi:10.1097/00004630-199107000-00014
Guenther FH, Brumberg JS, Wright EJ, Nieto-Castanon A, Tourville JA, Panko M, et al. A wireless brain-machine interface for real-time speech synthesis. PloS One. 2009;4:e8218. doi:10.1371/journal.pone.0008218
Pérez-Marcos D, Buitrago JA, Velásquez FD. Writing through a robot: A proof of concept for a brain-machine interface. Med Eng Phys. 2011;33:1314-7. doi:10.1016/j.medengphy.2011.06.005
Yuna Y, Yanyan Z, Wenwen Z, Nuo G. Speech Care System for Stroke Based on Asynchronous Brain-Computer Interface (BCI). In: 2019 IEEE 4th International Conference on Signal and Image Processing (ICSIP); 2019:274-8. doi:10.1109/SIPROCESS.2019.8868885
Lech M, Kucewicz MT, Czyzewski A. Human Computer Interface for Tracking Eye Movements Improves Assessment and Diagnosis of Patients With Acquired Brain Injuries. Front Neurol. 2019;10. doi:10.3389/fneur.2019.00006
van Kokswijk J, Van Hulle M. Self adaptive BCI as service-oriented information system for patients with communication disabilities. In: 4th International Conference on New Trends in Information Science and Service Science; 2010:264-269. [Accessed January 25, 2024] Available at: https://ieeexplore.ieee.org/document/5488610.
Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. doi:10.1136/bmj.n71
Donato H, Donato M. Etapas na Condução de uma Revisão Sistemática. Acta Médica Port. 2019;32:227-35. doi:10.20344/amp.11923
Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan--a web and mobile app for systematic reviews. Syst Rev. 2016;5:210. doi:10.1186/s13643-016-0384-4
Muka T, Glisic M, Milic J, Verhoog S, Bohlius J, Bramer W, et al. A 24-step guide on how to design, conduct, and successfully publish a systematic review and meta-analysis in medical research. Eur J Epidemiol. 2020;35:49-60. doi:10.1007/s10654-019-00576-6
Dang D, Dearholt SL, Bissett K, Ascenzi J, Whalen M. Johns Hopkins Evidence-Based Practice for Nurses and Healthcare Professionals: Model and Guidelines. 4th ed. Indianapolis: Sigma Theta Tau, 2021.
Sreedharan S, Chandran A, Yanamala VR, Sylaja PN, Kesavadas C, Sitaram R. Self-regulation of language areas using real-time functional MRI in stroke patients with expressive aphasia. Brain Imaging Behav. 2020;14:1714-30. doi:10.1007/s11682-019-00106-7
Sreedharan S, Arun KM, Sylaja PN, Kesavadas C, Sitaram R. Functional Connectivity of Language Regions of Stroke Patients with Expressive Aphasia During Real-Time Functional Magnetic Resonance Imaging Based Neurofeedback. Brain Connect. 2019;9:613-26. doi:10.1089/brain.2019.0674
Klein SC, Gottschalt L, Teichlein E, Weilbach TX. Toward a P300 Based Brain-Computer Interface for Aphasia Rehabilitation after Stroke: Presentation of Theoretical Considerations and a Pilot Feasibility Study. Front Hum Neurosci. 2016;10. doi:10.3389/fnhum.2016.00547
Musso M, Hubner D, Schwarzkopf S, Bernodusson M, LeVan P, Weiller C, et al. Aphasia recovery by language training using a brain-computer interface: a proof-of-concept study. Brain Commun. 2022;4:fccc008. doi:10.1093/braincomms/fccc008
Sreedharan S, Arun K, Sylaja P, Kesavadas C, Sitaram R. Functional Connectivity of Language Regions of Stroke Patients with Expressive Aphasia During Real-Time Functional Magnetic Resonance Imaging Based Neurofeedback. Brain Connect. 2019;9:613-26. doi:10.1089/brain.2019.0674
Grimshaw J, Campbell M, Eccles M, Steen N. Experimental and quasi-experimental designs for evaluating guideline implementation strategies. Fam Pract. 2000;17(suppl_1):S11-S16. doi:10.1093/fampra/17.suppl_1.S11
Chidambaram AG, Josephson M. Clinical research study designs: The essentials. Pediatr Investig. 2019;3:245-252. doi:10.1002/ped4.12166
Berkhout C, Berbra O, Favre J, Collins C, Calafiore M, Peremans L, et al. Defining and evaluating the Hawthorne effect in primary care, a systematic review and meta-analysis. Front Med. 2022;9. doi:10.3389/fmed.2022.1033486
Hartwigsen G, Saur D. Neuroimaging of stroke recovery from aphasia--Insights into plasticity of the human language network. NeuroImage. 2019;190:14-31. doi:10.1016/j.neuroimage.2017.11.056
Abiri R, Borhani S, Sellers EW, Jiang Y, Zhao X. A comprehensive review of EEG-based brain-computer interface paradigms. J Neural Eng. 2019;16:011001. doi:10.1088/1741-2552/aaf12e
Nolfe G, Cobianchi A, Mossuto-Agatiello L, Giaquinto S. The role of P300 in the recovery of post-stroke global aphasia. Eur J Neurol. 2006;13:377-384. doi:10.1111/j.1468-1331.2006.01237.x
Rota G, Sitaram R, Veit R, Erb M, Weiskopf N, Dogil G, et al. Self-regulation of regional cortical activity using real-time fMRI: The right inferior frontal gyrus and linguistic processing. Hum Brain Mapp. 2009;30:1605-14. doi:10.1002/hbm.20621
Sorger B, Kamp T, Weiskopf N, Peters JC, Goebel R. When the Brain Takes "BOLD" Steps: Real-Time fMRI Neurofeedback Can Further Enhance the Ability to Gradually Self-regulate Regional Brain Activation. Neuroscience. 2018;378:71-88. doi:10.1016/j.neuroscience.2016.09.026
Wang T, Mantini D, Gillebert CE. The potential of real-time fMRI neurofeedback for stroke rehabilitation: A systematic review. Cortex. 2018;107:148-165. doi:10.1016/j.cortex.2017.09.006
Qiu WH, Wu HX, Yang QU, et al. Evidence of cortical reorganization of language networks after stroke with subacute pore's aphasia: a blood oxygenation level dependent-functional magnetic resonance imaging study. Neural Reports Res. 2017;12:109-17. doi:10.4103/1673-5324.198996
Yang M, Li J, Yao D, Chen H. Disrupted Intrinsic Local Synchronization in Poststroke Aphasia. Medicine. 2016;95:e3101. doi:10.1097/MD.000000000003101
Yang M, Yang P, Fan YS, et al. Altered Structure and Intrinsic Functional Connectivity in Post-stroke Aphasia. Brain Topogr. 2018;31:300-10. doi:10.1007/s10548-017-0594-7
Pulvermuller F, Hauk O, Zohsel K, Neininger B, Mohr B. Therapy-related reorganization of language in both hemispheres of patients with chronic aphasia. NeuroImage. 2005;28:481-9. doi:10.1016/j.neuroimage.2005.06.038
Georgiou AM, Kambanaros M. Therapies and Challenges in the Post-Stroke Aphasia Rehabilitation Arena: Current and Future Prospects. Med Kaunas Lith. 2023;59:1674. doi:10.3390/medicina59091674
Wilson SM, Schneck SM. Neuroplasticity in post-stroke aphasia: A systematic review and meta-analysis of functional imaging studies of reorganization of language processing. Neurobiol Lang Camb Mass. 2021;2:22-82. doi:10.1162/nol_a_00025
Xu M, He F, Jung TP, Gu X, Ming D. Current Challenges for the Practical Application of Electroencephalography-Based Brain-Computer Interfaces. Engineering. 2021;7:1710-2. doi:10.1016/j.eng.2021.09.011
Tiwari NJ, Elda DR, Dodia S, Bablani A. Brain computer interface: A comprehensive survey. BiolInspired Cogn Archit. 2018;26:118-129. doi:10.1016/j.bica.2018.10.005
Downloads
Publicado
Como Citar
Edição
Secção
Licença
Direitos de Autor (c) 2024 Ana Sofia Branquinho, Patrícia Maia, Inês Tello Rodrigues (Autor)

Este trabalho encontra-se publicado com a Creative Commons Atribuição-NãoComercial 4.0.